

Blade Testing at NREL's National Wind Technology Center

PIX 17536

2010 Sandia National Laboratory

Blade Workshop

Scott Hughes

July 20, 2010

NREL/PR-500-48898

NREL Turbine Test Capabilities

- Field testing
 - Demonstrates advances in control systems, load alleviation, innovative technology
 - MW-scale turbines
 - Small and mid-size turbines
- Drive train testing
 - 225 kW dynamometer
 - 2.5 MW dynamometer
 - 5 MW dynamometer by 9/2012
 - Grid integration upgrade
- Blade testing Wind and Water
 - 3 test labs at NWTC, up to 50m blades
 - 90-m blades at Massachusetts blade test facility

PIX 17398

PIX 17244

Why Test Blades?

- Blade reliability identified as significant O&M cost
- Minimize risk of field failures
- Testing is a certification requirement
 - Withstand the design/test loads
 - Identify manufacturing weaknesses
- Validate model data with empirical values
 - Proof of concept and prototype testing
 - Stress and strain
 - Stiffness / deflection
 - Ultimate static strength
 - Design life verification

PIX 16392

Advancing Blade Test Methodology

Goal

- Attain high levels of blade and rotor system reliability through advanced test methods
- Reduce the cost and time of testing

Approach basis

- 30 years of blade testing experience at the NWTC
 - Design innovative test system hardware
 - Advanced test methods with fast, low-cost deployment
 - Collaborations with federal labs, industry, and academia

NWTC Blade Test Capabilities

- Testing facilities
 - IUF Blades to 50 m
 - Building A60 Blades to 19 m
 - Building 251 Blades to 19 m
- Typical test sequence
 - Static testing
 - Fatigue testing
 - Property testing (modal, mass distribution)
- ISO/IEC 17025, A2LA accredited for full-scale blade testing
- Subcomponent Testing

Certification Testing

Static Testing

- Tests the ability of the blade to withstand design load cases
- Typically applied in 4-6 load vectors
- Load application through quasistatic methods
 - Cranes
 - Ballast Weights
 - Winches
 - Hydraulic actuators

Fatigue Testing

- Lifetime verifications
 - 20-year blade life on the order of 1x10⁹ in-field cycles
 - Laboratory testing accelerates loading through increasing load magnitude
- Methods
 - Single-axis
 - Dual-axis
 - Forced Displacement
 - Resonant

135 Full-scale blade tests have been conducted at the NWTC

Test Method Development

- Limitations of current test methods
 - Blade failures continue despite current testing practices
 - Complete testing time increases as blades get longer
 - Current test practices not representative of in-field loading
- Research and Development to improve test efficiency
 - Dual-Axis Resonant Testing (UREX)
 - Phased-Locked Dual-Axis Testing (PhLEX)
 - Base Excitation Testing (BETS)
- Assessment of test methods with field experience

Test Method Development

PIX 16270

Continual improvement in test characteristics

PIX 17639

Test cost and test time

PIX 17641

PIX 12894

Universal Resonant Excitation (UREX)

- Applies dual-axis fatigue loads at multiple resonant frequencies
- Prototype demonstrated on a 9-meter blade at NREL
- Commercialized version has been developed with MTS
 - Modular, scalable
 - Up to 2000-kg of oscillating mass at 0.15-meters of stroke
 - Multi-station capability
- Developed for use at the WTTC facility
- Demonstration on MW-scale blades Fall 2010
- Technology deployed to testing facilities worldwide

UREX on blade. Courtesy: MTS

MTS UREX. Courtesy: MTS

PIX 17637

Phase-Locked Excitation (PhLEX)

- Control actuator stiffens system in the flapwise direction until the natural frequencies in both flapwise and edgewise directions are approximately equal
- Minimize point-load forces introduced by actuators
- Faster, more efficient resonant testing with ideal cycle-to-cycle load and phase control
- Prototype demonstration on a 9-meter blade fall of 2010

Base Excitation Test System (BETS)

- Design for applying dual-axis fatigue loads at multiple resonant frequencies
- Design for scaling to large blades
- Incorporate a flexible link at the root of the blade, which can be adaptable to existing test stand designs
- Prototype demonstration on a 9-meter blade at NREL in the Fall of 2010

Static Testing Development

- Specification and development
 WTTC equipment
 - MTS UREX specifications
 - MTS static loading equipment specifications
- \$2M of MTS test equipment supplied to WTTC by January 2011
- NREL contact Dave Snowberg, david.snowberg@nrel.gov

PIX 17636

Winch module Courtesy: MTS

Blade Test Data Acquisition Development

- Advanced NI distributed hardware
 - Short analog wires for reduced noise
 - Simplified test setup
- Records hundreds of channels at high sample rates (up to 5 kHz each)
 - Eigenfrequency analysis
 - Capture transient events

PIX 17638

- NWTC customized software
 - Real-time monitoring of equivalent fatigue damage
 - Automated event detection
 - Virtual channels for quality control and display

Test Design Code: BladeFS

Developed to analyze and optimize blade test setup

- Modules for both static and fatigue tests
 - Test load calculation
 - Deflection prediction (discrete beam analysis)
 - Layout optimization for load introduction
- Graphical user interface
- Excel input file
- Word and Excel output files

http://wind.nrel.gov/designcodes/simulators/BladeFS/

Contact Michael Desmond: michael.desmond@nrel.gov

Sandia Sensor Blade Testing

- Collaborative test with SNL to demonstrate internal accelerometers and CM systems
- Blade tested in fatigue to failure, test collaborators to provide summary of results
- CM/NDE test collaborators
 - Los Alamos National Labs -Macro Fiber Composite actuator/sensor waveform
 - UMASS Lowell Digital Image
 Correlation
 - Luna Innovations Fiber Optic Strain
 - Micron Optics FBG fiber optic strain
 - Intelligent Fiber Optic Systems- fiber optic strain
 - NASA Piezoelectric actuator/sensor waveform measurement
 - Laser Technology Inc Shearography

WTTC Commissioning

- Objective
 - Demonstrate new facility capabilities with a MW-scale blade test
 - Optimize and validate test methods
- •NREL solicits feedback from blade manufacturers and suppliers on effective means to conduct initial test to commission facility
- Approaches under consideration
 - Competitive CRADA solicitation
 - WTTC/NREL cost-shared demonstration blade test
 - Purchase of test blade

Technical contact is Derek Berry: derek.berry@nrel.gov
Business contact is Rahul Yarala: ryarala@masscec.com